測度論

「測度論」の編集履歴(バックアップ)一覧はこちら

測度論」(2013/03/23 (土) 17:41:52) の最新版変更点

追加された行は緑色になります。

削除された行は赤色になります。

&tags() &topicpath() ---- #contents() *有限加法族 与えられた空間Xの部分集合族$$\mathfrak{F}$$が以下の条件を満たすとき、これを''有限加法族''とよぶ。 + $$\phi \in \mathfrak{F}$$ + $$A \in \mathfrak{F}$$ならば$$A^c \in \mathfrak{F}$$ + $$A,B \in \mathfrak{F}$$ならば$$A \cup B \in \mathfrak{F}$$ *Jordan測度 空間Xとその有限加法族$$\mathfrak{F}$$に対して$$\mathfrak{F}$$-集合函数m(A)が以下の条件を満たすとき、mを$$\mathfrak{F}$$の上の''Jordan測度''(有限加法的測度)という。 + $$\forall A \in \mathfrak{F}$$に対して$$0 \leq m(A) \leq \infty$$、特に$$m(\phi)=0$$ + $$A,B \in \mathfrak{F}, A \cap B = \phi$$ならば$$m(A+B)=m(A)+m(B)$$ *諸定義 : 有限加法性 | どの2つも互いに交わらない集合列$$A_i(i=1,\cdots n) \in \mathfrak{F}$$に対して、 |SIZE(30): $$m(\sum_{j=1}^n A_j) = \sum_{n=1}^n m(A_j)$$ | : 完全加法性 | どの2つも互いに交わらない集合列$$A_i(i=1,\cdots) \in \mathfrak{F}$$に対して、$$A = \sum A_n \in \mathfrak{F}$$が成り立つならば |SIZE(30):$$m(A) = \sum_{j=1}^\infty m(A_n)$$| *Carathéodory外測度 空間Xのすべての部分集合Aに対して定義された集合函数$$\Gamma(A)$$があって以下の条件を満たすときこれを''Carathéodry外測度''という。 + $$0 \leq \Gamma(A) \leq \infty, \quad \Gamma(\phi)=0$$ (非負性) + $$A \subset B$$ならば$$\Gamma(A) \leq \Gamma(B)$$ (単調性) + (劣加法性) |SIZE(30):$$\Gamma\left(\bigcup_{n=1}^\infty A_n \right) \leq \sum_{n=1}^\infty \Gamma(A_n)$$| *諸定義 : Carathéodoryの意味で可測($$\Gamma$$-可測) | 空間Xに外測度$$\Gamma$$が定義されているとする。$$E \subset X$$が以下の条件を満たす。 $$\forall A \subset X, \Gamma(A) = \Gamma(A \cap E) + \Gamma(A \cap E^c)$$ : 零集合 | $$\Gamma(E)=0$$なる集合 *加法族 空間Xの部分集合族$$\mathfrak{B}$$があって以下の条件を満たすときこれを''加法族''(完全加法族、$$\sigma$$加法族)とよぶ。 + $$\phi \in \mathfrak{B}$$ + $$E \in \mathfrak{B}$$ならば$$E^c \in \mathfrak{B}$$ + $$E_n \in \mathfrak{B} (n=1,2,\cdots)$$ならば |SIZE(30):$$\bigcup_{n=1}^\infty E_n \in \mathfrak{B}$$| *測度 空間Xとその部分集合の$$\sigma$$-加法族$$\mathfrak{B}$$があって、$$\mathfrak{B}$$-集合函数$$\mu(A)$$が以下を満たすとき、これを''測度''とよぶ。 + $$0 \leq \mu(A) \leq \infty, \mu(\phi)=0$$ (非負性) + $$A_n \in \mathfrak{B} (n=1,2,\cdots), A_j \cap A_k = \phi (j \neq k)$$ならば (完全加法性、可算加法性) |SIZE(30):$$\mu\left(\sum_{n=1}^\infty A_n \right) = \sum_{n=1}^\infty \mu(A_n)$$| ---- #comment()
&tags() &topicpath() ---- #contents() *有限加法族 与えられた空間Xの部分集合族$$\mathfrak{F}$$が以下の条件を満たすとき、これを''有限加法族''とよぶ。 + $$\phi \in \mathfrak{F}$$ + $$A \in \mathfrak{F}$$ならば$$A^c \in \mathfrak{F}$$ + $$A,B \in \mathfrak{F}$$ならば$$A \cup B \in \mathfrak{F}$$ *Jordan測度 空間Xとその有限加法族$$\mathfrak{F}$$に対して$$\mathfrak{F}$$-集合函数m(A)が以下の条件を満たすとき、mを$$\mathfrak{F}$$の上の''Jordan測度''(有限加法的測度)という。 + $$\forall A \in \mathfrak{F}$$に対して$$0 \leq m(A) \leq \infty$$、特に$$m(\phi)=0$$ + $$A,B \in \mathfrak{F}, A \cap B = \phi$$ならば$$m(A+B)=m(A)+m(B)$$ *諸定義 : 有限加法性 | どの2つも互いに交わらない集合列$$A_i(i=1,\cdots n) \in \mathfrak{F}$$に対して、 |SIZE(30): $$m(\sum_{j=1}^n A_j) = \sum_{n=1}^n m(A_j)$$ | : 完全加法性 | どの2つも互いに交わらない集合列$$A_i(i=1,\cdots) \in \mathfrak{F}$$に対して、$$A = \sum A_n \in \mathfrak{F}$$が成り立つならば |SIZE(30):$$m(A) = \sum_{j=1}^\infty m(A_n)$$| *Carathéodory外測度 空間Xのすべての部分集合Aに対して定義された集合函数$$\Gamma(A)$$があって以下の条件を満たすときこれを''Carathéodry外測度''という。 + $$0 \leq \Gamma(A) \leq \infty, \quad \Gamma(\phi)=0$$ (非負性) + $$A \subset B$$ならば$$\Gamma(A) \leq \Gamma(B)$$ (単調性) + (劣加法性) |SIZE(30):$$\Gamma\left(\bigcup_{n=1}^\infty A_n \right) \leq \sum_{n=1}^\infty \Gamma(A_n)$$| *諸定義 : Carathéodoryの意味で可測($$\Gamma$$-可測) | 空間Xに外測度$$\Gamma$$が定義されているとする。$$E \subset X$$が以下の条件を満たす。 $$\forall A \subset X, \Gamma(A) = \Gamma(A \cap E) + \Gamma(A \cap E^c)$$ : 零集合 | $$\Gamma(E)=0$$なる集合 *加法族 空間Xの部分集合族$$\mathfrak{B}$$があって以下の条件を満たすときこれを''加法族''(完全加法族、$$\sigma$$加法族)とよぶ。 + $$\phi \in \mathfrak{B}$$ + $$E \in \mathfrak{B}$$ならば$$E^c \in \mathfrak{B}$$ + $$E_n \in \mathfrak{B} (n=1,2,\cdots)$$ならば |SIZE(30):$$\bigcup_{n=1}^\infty E_n \in \mathfrak{B}$$| *測度 空間Xとその部分集合の$$\sigma$$-加法族$$\mathfrak{B}$$があって、$$\mathfrak{B}$$-集合函数$$\mu(A)$$が以下を満たすとき、これを''測度''とよぶ。 + $$0 \leq \mu(A) \leq \infty, \mu(\phi)=0$$ (非負性) + $$A_n \in \mathfrak{B} (n=1,2,\cdots), A_j \cap A_k = \phi (j \neq k)$$ならば (完全加法性、可算加法性) |SIZE(30):$$\mu\left(\sum_{n=1}^\infty A_n \right) = \sum_{n=1}^\infty \mu(A_n)$$| : Lebesgur外測度 | $$R^N$$において$$f_\nu(\lambda)=\lambda (\nu=1,\cdots,N)$$として構成された外測度 : Lebesgue可測集合 | $$\Gamma$$が$$R^N$$におけるLesbesgue外測度$$\mu^*$$であるときの$$\mathfrak{M}_\mu^*$$に属する集合 : Lebesgue測度 | $$\mu^*$$を$$\mathfrak{M}_\mu^*$$上で考えた測度 ---- #comment()

表示オプション

横に並べて表示:
変化行の前後のみ表示: